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Abstract—Early identification of dementia at the stage
of mild cognitive impairment (MCI) is crucial for timely di-
agnosis and intervention of Alzheimer’s disease (AD). Al-
though several pioneering studies have been devoted to
automated AD diagnosis based on resting-state functional
magnetic resonance imaging (rs-fMRI), their performance
is somewhat limited due to non-effective mining of spatial-
temporal dependency. Besides, few of these existing ap-
proaches consider the explicit detection and modeling of
discriminative brain regions (i.e., network hubs) that are
sensitive to AD progression. In this paper, we propose
a unique Spatial-Temporal convolutional-recurrent neural
Network (STNet) for automated prediction of AD progres-
sion and network hub detection from rs-fMRI time series.
Our STNet incorporates the spatial-temporal information
mining and AD-related hub detection into an end-to-end
deep learning model. Specifically, we first partition rs-fMRI
time series into a sequence of overlapping sliding win-
dows. A sequence of convolutional components are then
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designed to capture the local-to-global spatially-dependent
patterns within each sliding window, based on which we
are able to identify discriminative hubs and characterize
their unique contributions to disease diagnosis. A recurrent
component with long short-term memory (LSTM) units is
further employed to model the whole-brain temporal de-
pendency from the spatially-dependent pattern sequences,
thus capturing the temporal dynamics along time. We eval-
uate the proposed method on 174 subjects with 563 rs-fMRI
scans from the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) database, with results suggesting the effectiveness
of our method in both tasks of disease progression predic-
tion and AD-related hub detection.

Index Terms—Spatial-temporal dependency, neural net-
work, Alzheimer’s disease, hub detection, resting-state
functional MRI.

I. INTRODUCTION

A LZHEIMER’s disease (AD), characterized by progressive
cognitive and functional deficits, is one of the most com-

mon types of neurodegenerative disorders in the aging popula-
tion [1]. As reported by the Alzheimer’s Association, AD has
been the sixth-leading cause of death in the United States, and
the death per year caused by AD is still increasing [2]. Although
the progression of AD is irreversible, alleviation of specific
symptoms is possible through timely diagnosis and intervention
at the early stages, e.g., mild cognitive impairment (MCI). The
Alzheimer’s disease Neuroimaging Initiative (ADNI) subdi-
vides MCI subjects as early MCI (eMCI) and late MCI (lMCI),
and various studies have proven that lMCI patients are relatively
at a higher risk of progression to AD [3]–[7]. Reliable diagnosis
across the full spectrum of AD progression (i.e., differentiating
between eMCI, lMCI, and AD) is for sure of great clinical value
(e.g., for timely intervention). However, it is a challenging task
in practice, due to the insidious onset and diverse symptoms
during the disease progression [8]–[10].

Resting-state functional magnetic resonance imaging (rs-
fMRI) has been widely used in the assessment of AD progres-
sion [11]–[15], by providing a noninvasive way to sensitively de-
tect functional changes in the brain before individuals progress to
meet clinical criteria for dementia. Using rs-fMRI data, various
learning-based methods have been proposed for automated AD
diagnosis. Most of these methods typically use Pearson’s cor-
relation based functional connectivity (FC) to characterize the
temporal relationships between different brain regions during
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Fig. 1. Illustration of our spatial-temporal convolutional-recurrent neural network with rs-fMRI time series (blood oxygen level-dependent signals
from N brain regions), containing 3 components: (a) partitioning rs-fMRI time series into T segments via overlapped sliding windows; (b) T
convolutional components (ConvCom), where each ConvCom contains three cascaded convolutional layers to hierarchically capture local node-
centralized properties and global spatial properties of functional connectivity within each time window, as well as to automatically detect disease-
related network hubs; and (c) a recurrent component to capture global/whole-brain temporal dynamics of the complete time series. With the output
of the recurrent component, a fully-connected layer is further used to perform disease classification (with P denoting the number of categories).

resting states [16], [17], under an implicit assumption that FC
of the human brain is stationary throughout the whole fMRI
recording period. Recent studies have shown that FC is dynamic
rather than stationary [18], [19], and hence, many new efforts
have shifted toward dynamic connectivity analysis. However,
existing dynamic-connectivity based methods either focus on
modeling local spatial dependency (i.e., between a given pair of
regions-of-interest) or local temporal dynamic properties (i.e.,
longitudinal patterns of a specific brain region), without consid-
ering the global spatial-temporal patterns. It’s highly desired to
capture the local-to-global spatial-temporal dependency from
rs-fMRI time series, which may help explore how connections
change in brain networks throughout the AD progression [20].

Apart from the modeling of stationary/dynamic FC proper-
ties, network hub connectivity uncovered by rs-fMRI is also
drawing increasing attention in the neuroscience community as
a dementia biomarker. Throughout the paper, the term “hub”
denotes a node (w.r.t. a specific brain region) in a brain FC
network that occupies a central position to reflect the global
structure of this network [21], [22]. In practice, network hubs are
crucial for optimal information flow in the brain, by effectively
revealing communication and information integration across
different brain regions [21], [23]. Recent studies suggest that
brain hub connectivity is preferentially affected by AD [23],
[24], considering that several hub regions in the brain (e.g., right
precuneus and left hippocampus) have been shown to reveal sig-
nificant abnormalities during the disease progression [25], [26].
Intuitively, explicitly exploring and modeling these AD-related
hubs in brain FC networks could bring additional knowledge for
the automated prediction of AD progression, while such kind
of information is improperly ignored by most of the existing
learning-based methods.

To this end, a novel deep learning architecture, i.e.,
Spatial-Temporal convolutional-recurrent neural Network
(STNet), is proposed in this paper for end-to-end AD progression
prediction and network hub detection using rs-fMRI time
series. Our STNet can not only learn the local-to-global spatial
dependencies between different brain regions (in terms of the

functional time series of blood oxygen level-dependent signals)
to explicitly detect AD-related network hubs, but also can
model the dynamic FC patterns of the whole brain in temporal
sequences. Fig. 1 shows the schematic diagram of our STNet
model, which consists of three components, i.e., (a) partition of
regional time series, (b) convolutional network component, and
(c) recurrent network component. Specifically, to characterize
the temporal variability of functional time series associated
with a given brain region (see Fig. 1(a)), we first divide rs-fMRI
time series into multiple overlapping segments using fixed-size
sliding windows. For each time-series segment (e.g., Seg 1), a
specific convolutional component (ConvCom, see Fig. 1(b)) is
designed to sequentially model both the local node-centralized
properties and the global high-level spatial properties of time
series within each segment. To detect the disease-related hub
regions, each node-based convolutional operator is accompanied
by a unique kernel. Also, a channel-wise fusion strategy is
employed to derive a holistic feature representation for each
segment by integrating the local-to-global spatial properties.
Furthermore, a recurrent component (see Fig. 1(c)) is stacked
on the longitudinally ordered holistic features for all time-series
segments to capture the long-term temporal dynamics. In each
RNN layer, the long short-term memory (LSTM) units are
adopted to characterize the sequential dependency between
those holistic features. Finally, a fully-connected layer, followed
by softmax activation, is used to predict disease progression
with the temporal-dynamic features produced by the recurrent
network component. We have evaluated the proposed method
on 174 subjects with 563 rs-fMRI scans from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) database, with
experimental results suggesting its effectiveness in both the tasks
of disease progression prediction and AD-related hub detection.

The major contributions of this work are three-fold. First, a
convolutional-recurrent network is designed to capture both the
local (i.e., brain regions) and global (i.e., whole-brain) spatial-
temporal dependency patterns from rs-fMRI time series. This is
different from previous studies that ignore the essential global
spatial-temporal information. Second, the proposed method can
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explicitly detect discriminative brain regions (i.e., network hubs)
from brain FC networks, thereby providing a flexible solution to
explore changes in functional connectivity throughout disease
progression. Besides, the proposed method has been evaluated
in both tasks of disease progression prediction and AD-related
network hub detection using rs-fMRI time series, with results
suggesting its effectiveness in comparison to state-of-the-art
methods.

The remainder of this paper is organized as follows. In
Section II, we first review related work on functional connectiv-
ity, and hub detection in the field of computer-aided brain disease
diagnosis. Then, we describe the dataset used in this study, and
present the STNet method in Section III. Experimental results
and discussion are presented in Sections IV and V, respectively.
Finally, we conclude this paper in Section VI.

II. RELATED WORK

A. Functional Connectivity Based Disease Diagnosis

Many efforts have been dedicated to investigating automated
AD diagnosis based on rs-fMRI based functional connectivity
(FC) networks. Functional connectivity is generally constructed
based on pair-wise temporal correlation (typically quantified by
Pearson’s correlation coefficient [27]) between blood oxygen
level-dependent (BOLD) signals of different brain regions. Con-
ventional methods usually assume that FC is temporally station-
ary within the entire scan period. For example, Jie et al. [28]
introduced a graph-kernel-based approach by measuring the
topological similarity between FCs to identify MCI patients
from normal controls (NCs). Bi et al. [29] designed a random
support vector machine (SVM) cluster method for AD identifi-
cation. This method randomly selects samples and FC features to
establish multiple SVMs, based on which an ensemble strategy
is employed for the final prediction. Through the analysis of
stationary FC, these conventional methods have shown great
potential in understanding the functional abnormalities caused
by AD/MCI [28]–[31]. However, growing evidence suggests
that FC is in fact not stationary and the dynamic FC properties
can more reliably monitor the changes of macroscopic neural
activities underlying cognitive and behavioral decline [18], [19].

Recently, many efforts have shifted toward the dynamic FC
analysis in AD progression prediction. To quantify dynamic
FC changes over time, one common strategy is using sliding
windows along the time axis [19], i.e., calculating FC in terms
of observations (time-series segments) lying within a time win-
dow with a fixed length, and shifting this window to generate
dynamic FCs. For example, Wee et al. [32] proposed a fused
Lasso based sparse learning algorithm to jointly estimate the
temporal dynamic FCs and extract local clustering coefficient
(CC) of these FCs for eMCI identification via a linear SVM.
Jie et al. [33] proposed to extract both local temporal and
spatial variability from dynamic FCs as features, based on
which a manifold regularized multi-task feature learning model
is applied to jointly select the most important spatial-temporal
features to construct a multi-kernel SVM for the prediction of
AD progression. Although existing dynamic FC-based methods
consider both spatial dependencies and temporal dynamics in the

prediction of disease progression, those methods fail to capture
the global temporal changing patterns of the whole brain (i.e.,
the longitudinal network-level patterns), and they also ignore the
global spatial dependency (e.g., the spatial dependency between
a specific region and all the other regions).

B. Hub Detection for Functional Connectivity Networks

In the literature of FC analysis, several studies have sug-
gested that exploring hub regions can bring additional infor-
mation to improve diagnosis performance and help understand
the pathological mechanisms of brain diseases. For instance,
Ma et al. [34] proposed an auto-weighted framework, i.e., multi-
view graph embedding with hub detection (MVGE-HD), for
brain FC analysis based on multi-modality data (i.e., fMRI and
diffusion tensor imaging). This method learns a unified graph
embedding across all views (i.e., modalities) while reducing the
potential influence of the hubs on blurring the boundaries be-
tween node clusters in the graph, and thus hubs can be identified
from the data. Wang et al. [35] proposed a connectivity network
analysis method with discriminative hub detection (CNHD) for
schizophrenia identification. They make trials to incorporate
feature selection, classifier training, and hub detection into a
unified framework, by which these three tasks could benefit each
other. However, previous methods are designed for stationary FC
analysis, which cannot model the dynamic property of functional
connectivity networks.

III. MATERIALS AND METHOD

In this section, we first introduce the materials used in this
work, and then present the proposed STNet as well as imple-
mentation details.

A. Materials

1) Data Acquisition: The rs-fMRI time-series data col-
lected from the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) database1 were studied in this paper. There are a total
of 563 scans from 174 subjects, including 48 normal controls
(NCs), 95 MCI, and 31 AD subjects. Notably, participants in this
study were scanned at one or more visits, separated by at least
half year, due to which these 563 scans can be categorized as 154
NC cases, 310 MCI (165 eMCI and 145 lMCI) cases, and 99 AD
cases, respectively. For each scan, the in-plane image resolution
is 2.29− 3.31mm, slice thickness is 3.31 mm, TE (echo time)
is 30 ms, TR (repetition time) is 2.2− 3.1 s, and the scanning
time for each subject is 7 min (resulting in 140 volumes). The
demographic information of these 563 scans is summarized in
Table I.

2) Data Pre-Processing: The rs-fMRI scans for all studied
subjects were pre-processed by a standard procedure using the
FSL FEAT software.2 Specifically, we first discarded the first 3
volumes for magnetization equilibrium before preprocessing,
and then processed the remaining 137 volumes following a

1http://adni.loni.usc.edu/
2http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FEAT
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TABLE I
DEMOGRAPHIC INFORMATION OF THE STUDIED 563 RS-FMRI SCANS FROM
THE ADNI DATABASE. THE VALUES ARE DENOTED AS MEAN± STANDARD

DEVIATION. M/F: MALE/FEMALE

standard pipeline, including slice timing correction, head mo-
tion estimation, bandpass filtering, and regression of nuisance
covariates (i.e., white matter, cerebrospinal fluid, and motion
parameters). The subjects with a head motion >2.0 mm of
maximal translation or 2.0◦ of maximal rotation were excluded.
After that, we performed the structural skull stripping based on
T1-weighted MRI and aligned the skull-stripped fMRIs onto the
Montreal Neurological Institute (MNI) space. The fMRI data
were then further spatially smoothed by a Gaussian kernel with
full-width-at-half-maximum (FWHM) of 6 mm. Note that we
did not perform scrubbing to data with a frame-wise displace-
ment larger than 0.5 mm, since this would introduce additional
artifacts. The subjects with more than 2.5 min of frame-wise
displacement (FD > 0.5) were excluded from further analy-
sis. Finally, we extracted the mean rs-fMRI time series (with
band-pass filtered 0.015− 0.15 Hz) of a set of 116 pre-defined
regions-of-regions (ROIs) based on the Automated Anatomical
Labeling (AAL) template. Finally, the time series of BOLD
signals from all ROIs were used as the input data of the proposed
method.

B. Spatial-Temporal Convolutional-Recurrent
Neural Network

As shown in Fig. 1, our proposed model consists of three com-
ponents, including 1) generation of network input, i.e., rs-fMRI
time series partition via sliding windows, 2) a convolutional
component, and 3) a recurrent component. In this section, we
introduce each module in detail.

We assume that the rs-fMRI time-series data for a subject
is X = (x1, . . . ,xN )T ∈ RN×M , where each vector xn ∈ RM

(n = 1 · · · , N ) contains the blood oxygen level dependent
(BOLD) measurements of the n-th ROI at M successive time
points. Here, N = 116 and M = 137 are the numbers of ROIs
and time points (i.e., with each time point corresponding to a
specific volume), respectively. Based on time-series data X, we
construct a learning model to predict the disease progression
by explicitly modeling the spatial-temporal information and
detecting discriminative network hubs (i.e., ROIs) in X.

1) Partition of rs-fMRI Time Series: We first normalize the
BOLD time series for each ROI as:

g(xn) = (xn − μn)/σn, (1)

where μn and σn (n = 1, . . . , N ) denote the mean and standard
deviation of the time-series signals for then-th ROI, respectively.
To characterize the temporal variability of the functional archi-
tecture associated with a set of given regions (Fig. 1(a)), we then

segment all rs-fMRI time series into T overlapping windows
with the constant length of L. Specifically, we set the window
size L as 30 time points and the overlap between two adjacent
windows as 2 time points, by which S = {Xt ∈ RN×L}Tt=1

denote the resulting time-series segments with T = 54. For each
subject, a sequence of T time-series segments S will be treated
as the input of the proposed network.

2) Convolutional Component: Using the time-series seg-
mentsS as the input, our STNet model employs T convolutional
components (ConvCom) to learn local-to-global spatial proper-
ties from time-series data, with each ConvCom corresponding to
a specific segment. As shown in the right part of Fig. 1(b), each
ConvCom adopts three successive convolutional layers (with
different roles) to learn a sequence of high-level holistic feature
representations for each segment. It explicitly incorporates both
local/global spatial properties to detect AD-related discrimi-
native hub regions of the temporal functional connectivity at
different time steps (i.e., for each Xt ⊂ S). Specifically, for the
t-th segment, we regard each ROI as the center node, and the 1st
layer in the proposed convolutional component employs local
node-centralized convolution (with K channels) on Xt to learn
the correlations between the time series of each central ROI
(e.g., the i-th row of Xt) and any other ROIs (e.g., the j-th row
of Xt). The k-th (k = 1, . . . ,K) channel for the t-th segment in
this convolutional operation can be defined as:

Fk
i,j = σ

(
Wk

i ∗ xt
i ∗ xt

j

)
= σ

(
L−1∑

l=0

Wk
i,lx

t
i,lx

t
j,l

)

(2)

where Wk
i represents the learnable weights (size: 1× L) for the

k-th convolutional kernel,xt
i andxt

j are the time-series segments
for the i-th and j-th ROIs, respectively, the operation ∗ denotes
the dot product, and Fk

i,j is the learned correlation between the
i-th and j-th ROIs. Considering that hub regions often make
specific contributions to the overall distribution of the functional
connectivity [36], we thus learn a unique set of filters for each
central ROI and share these filters (for the same central ROI)
across all time steps to automatically identify and differentiate
these hub regions. Given K channels at each segment, we can
construct K dynamic functional connectivity (FC) networks,
where the connectivities between each ROI and all the remaining
N − 1 ROIs are learned in a data-driven manner (via Eq. 2) and
the connectivity between a specific ROI and itself is set to be 0.

Based on the local spatial patterns (for an ROI) learned from
the 1st layer, i.e., an (N − 1)×K matrix learned by Eq. 2, the
2nd layer applies global node-centralized convolution to further
mining the higher-level spatial property of each central ROI, i.e.,
the joint spatial dependency between the central ROI and all re-
maining ROIs. Here, the global node-centralized convolutional
filters (with C channels) for each central ROI are also unique
and shared across time steps, aiming to identify AD-related hub
regions with specific contributions in the whole brain network.
Different from the 1st layer, the filters in this 2nd layer are
general convolutional kernels with the size of (N − 1)× 1, and
the output of the 2nd layer for each ROI is a 1× C tensor. Given
N ROIs, we can generate a tensor F ∈ RN×C via the 2nd layer.
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In the 3rd layer, we integrate the global spatial patterns of
all ROIs (i.e., F derived from the 2nd layer) to derive a high-
level holistic feature representation (i.e., an N ×H tensor) for
each time-series segmentXt. Considering that the rs-fMRI time-
series signals are usually noisy, a specific fusion strategy with a
channel-wise sparse-constraint is designed to this end, instead
of treating all input C channels equally. Specifically, for the
feature F generated by the 2nd layer, the channel-wise feature
aggregation in the 3rd layer is performed as follows

u = V ∗ F (3)

whereV is a to-be-learned kernel with the size of 1× 1. For sim-
plicity, V is penalized by the �1-norm sparse constraint on each
channel, which helps to reduce the negative influence of noisy
input channels on the holistic feature representation. Therefore,
the output of the 3rd layer for each segment is a holistic feature
representation, i.e., a N ×H tensor. Given T segments, we can
finally obtain the holistic feature representation for each subject,
i.e., N × T ×H tensor.

3) Recurrent Component: To model the temporal dynam-
ical patterns of brain activity, we cast the holistic feature repre-
sentation (i.e., the output of the convolutional component) into
a longitudinally ordered sequence, which is then processed by
the recurrent component of our STNet model (Fig. 1(c)). In this
component, we use long short-term memory (LSTM) units to
capture the temporal sequential patterns, considering that they
can properly address exploding and vanishing gradient issues
of traditional RNN [37], [38]. The architecture of the LSTM
RNN used in this study is illustrated in Fig. 1(c), including
three stacked LSTM layers and one fully-connected layer. The
stacked LSTM layers (with 16, 8, and 4 neurons, respectively)
are used to encode the holistic functional feature representation
for the learning of the temporal dynamics along time steps. Each
of these LSTMs is followed by batch normalization and tanh
activation. Finally, the fully-connected layer (with P neurons
and followed by softmax) is employed to learn a mapping
between the dynamical feature representation and the disease
progression prediction (with P categories).

C. Implementation Details

The proposed network was implemented using Python based
on the Keras package,3 and the model was trained on a single
GPU (NVIDIA GeForce GTX TITAN) with 12 GB of memory.
In each convolutional component, the numbers of channels for
the three convolutional layers were set as K = 16, C = 8,
and H = 1, respectively, to control the number of learnable
parameters. Each convolutional layer was followed by batch
normalization, rectified linear unit (ReLU) activation, and 0.5
dropout. In the recurrent component, the numbers of neurons
for each LSTM unit of the three layers were 16, 8, and 4,
respectively. Each recurrent layer was followed by batch normal-
ization, tanh activation, and 0.5 dropout. Based on the output
of the stacked RNN, a fully-connected layer with P neurons
(corresponding to the number of categories) was employed to

3https://github.com/fchollet/keras

predict the progression of AD. The sigmoid and softmax were
used as the activation functions of the last fully-connected layer
for the binary and multi-class classification tasks, respectively.
The Adam optimizer with recommended parameters was used
for training, and the number of epochs and batch size were
empirically set as 200 and 16, respectively.

IV. EXPERIMENTS

A. Methods for Comparison

In the experiments, we compare our STNet method with the
following six methods, including three baseline methods and
three variants of the proposed model.

1) Clustering Coefficient (CC) [39]: In this method, a
stationary functional connectivity (FC) network/matrix
(size: 116× 116) was first constructed for each subject
by computing the Pearson correlation coefficient between
the time series of any pair of ROIs. Then, local clustering
coefficients of the stationary FC network were extracted
as features, by measuring the degree of each node in the
FC network. The vectorized local clustering coefficients
extracted from all nodes/ROIs were then concatenated
and fed into a support vector machine (SVM) for disease
progression prediction.

2) Lasso [40]: In this method, a stationary FC network was
first constructed for each subject. Then, the upper triangle
and diagonal elements (i.e., correlation of an ROI to itself)
were removed from the stationary FC matrix, and the
remaining parts were converted into a vectorized feature
representation for each subject. To reduce feature dimen-
sion, Lasso was used to select a discriminative subset
of features from the vectorized feature representation,
followed by SVM for AD prediction. The parameter for
the sparsity constraint in Lasso was chosen from the range
of {2−3, . . . , 23} via cross-validation.

3) CNN: In this method, the stationary FC matrix for each
subject was directly used as the input to construct a CNN
model [41]. Specifically, the CNN model was imple-
mented to contain three convolutional layers and three
fully-connected layers. The three convolutional layers
had 16, 8 and 1 channel(s), and the corresponding filters
had the size of 11× 11, 5× 5, and 3× 3, respectively.
The first two fully-connected layers contained 64 and 32
neurons, respectively. Similar to our STNet model, the
last fully-connected layer (with P neurons) of this CNN
model was followed by the sigmoid/softmax normaliza-
tion for binary/multi-class disease prediction.

4) STNet-T: As a variant of STNet, STNet-T was imple-
mented without considering the temporal dynamics along
time steps. That is, we replaced the stacked RNN layers
in STNet with two fully-connected layers with 64 and 32
neurons, respectively.

5) STNet-D: To evaluate the influence of our constructed
dynamic FC networks in STNet (via the 1st Conv layer
in the proposed convolutional component), the STNet-D
method was implemented by using pre-constructed
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TABLE II
PERFORMANCE OF BINARY DISEASE IDENTIFICATION WITH RS-FMRI TIME SERIES DATA

dynamic FCs [18] as the input data, while the remaining
network architecture was the same as that in STNet.

6) STNet-C: This variant employed the same architecture
as our STNet model, but without using the proposed
channel-wise sparse-constraint fusion strategy. Specifi-
cally, STNet-C did not activate the channel-wise sparse
constraint (i.e., V in Eq. 3 without �1-norm constraint)
for the fusion operation in the 3rd convolutional layer of
each convolutional component.

Note that these methods (i.e., CC, Lasso, CNN and STNet-D)
relied on a pre-defined stationary/dynamic FC network(s) (size:
116× 116) for each subject, with each element in this matrix
denoting the Pearson correlation coefficient between the time
series of any pair of ROIs. In contrast, our STNet and its two
variants (i.e., STNet-T and STNet-C) worked directly on the
rs-fMRI time-series data, without the need for pre-computing
FC matrices. The SVM classifiers used in CC and Lasso adopted
a linear kernel with default parameters.

B. Experimental Settings

In this study, we employed a 5-fold cross-validation strat-
egy [42] to evaluate the performances of different methods.
Specifically, all subjects were partitioned into 5 subsets (with
each subset having a roughly equal size). Each subset was
sequentially selected as the test set, while remaining subsets
were combined to construct the training set. In addition, we
further randomly spit 15% training subjects as the validation
data to determine the optimal parameters for each method. Such
process was repeated five times independently to avoid any
bias introduced by the random partitioning of the data in the
cross-validation process. Note that, no test data was used in such
cross-validation process. The classification results were finally
averaged over all iterations.

To evaluate the efficacy of the proposed STNet model, we
conducted experiments on both binary and multi-class classifi-
cation tasks, including 1) AD vs. NC classification, 2) lMCI
vs. eMCI classification, 3) AD vs. MCI vs. NC classifica-
tion, and 4) AD vs. lMCI vs. eMCI vs. NC classification.
The binary classification performance was measured by seven
criteria, i.e., classification accuracy (ACC), sensitivity (SEN),
specificity (SPE), balanced accuracy (BAC), positive predictive
value (PPV), negative predictive value (NPV), and the area under

the receiver operating characteristic (ROC) curve (AUC) [43].
Let TP, TN, FP and FN be True Positive, True Negative, False
Positive, and False Negative, respectively. Those evaluation
metrics can be defined as: ACC=(TP+TN)/(TP+TN+FP+FN),
SEN=TP/(TP+FN), SPE=TN/(TN+FP), BAC=(SEN+SPE)/2,
PPV=TP/(TP+FP), and NPV=TN/(TN+FN), respectively. The
performance of multi-class disease classification was evaluated
by the overall accuracy for multiple categories and the accuracy
for each category. For these metrics, higher values indicate better
classification performance.

C. Classification Performance

The quantitative results achieved by different methods in
the binary and multi-class classification tasks are reported in
Table II and Table III, respectively. The ROC curves in the
binary classification task are further plotted in Fig. 2. In the
Supplementary Materials, we further report the running time
of different methods and the confusion matrices for multi-class
classification.

From Tables II–III and Fig. 2, one could have three main
observations. First, our proposed method and its variants (i.e.,
STNet-T, STNet-D, and STNet-C) generally achieved better
performance, compared to the baseline methods (i.e., CC, Lasso,
and CNN) in both binary and multi-class tasks. For example,
in terms of ACC values, STNet achieved the improvement of
9.72% and 9.15%, compared with the best baseline method
(i.e., CNN) in AD vs. NC classification and lMCI vs. eMCI
classification, respectively. The proposed method also yielded
the best overall ACC of 71.76% and 60.67% for AD vs. MCI vs.
NC and AD vs. lMCI vs. eMCI vs. NC classification, respec-
tively, which largely outperformed the best baseline methods
(with 68.66% and 53.18% for the two tasks, respectively). These
results demonstrate that explicitly modeling the spatial-temporal
information inherent in rs-fMRI time series to capture AD-
related hub regions in brain FC is beneficial in the prediction
of disease progression. Second, our proposed STNet and its
variants STNet-D and STNet-C outperformed those methods
without considering the temporal dynamics (e.g., CNN and
STNet-T) in terms of most metrics. In particular, the SEN values
produced by our STNet for AD vs. NC and lMCI vs. eMCI
classification are 96.67% and 80.95%, respectively, which are
higher than other competing methods. These results suggest that
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TABLE III
PERFORMANCE OF MULTI-CLASS DISEASE IDENTIFICATION WITH RS-FMRI TIME SERIES DATA. FOR EACH TASK, THE FIRST COLUMN IS THE OVERALL

ACCURACY PERFORMANCE AND EACH OF THE REMAINING COLUMNS REPORTS THE CLASSIFICATION ACCURACY FOR EACH INDIVIDUAL CLASS

Fig. 2. ROC curves achieved by seven different methods in (a) AD vs.
NC classification, and (b) lMCI vs. eMCI classification.

the recurrent component of our STNet can effectively capture
dynamic changes in rs-fMRI time series measurements. Note
that high SEN values should be a practically meaningful ad-
vantage for timely diagnosis at the early stage of AD (e.g., the
identification of eMCI). Finally, our STNet generally achieved
better performance than its variants STNet-D and STNet-C,
especially in terms of ACC values. These results imply that the
data-driven construction of dynamic FCs and the channel-wise
feature fusion strategies help boost the learning performance of
STNet.

D. Constructed Functional Connectivity

The proposed method can construct dynamic FC networks in
a data-driven manner, which is different from previous studies
that rely on pre-defined FC networks (e.g., via Pearson’s cor-
relation) [32], [33], [35]. We now further investigated the FC
networks constructed by the proposed STNet method. Specifi-
cally, the output of the first covolutional layer in the proposed
convolutional component (see Fig. 1(b)) denotes the local node-
centralized connection between each central node/ROI and all
the remaining N − 1 ROIs. Therefore, we can construct a fully-
connected FC network based on the connectivity vector (i.e.,
the learned node-centralized connection) for each central ROI,
where the connectivity between a specific ROI and itself is set to
0. Since there areK = 16 channels in the local node-centralized
convolutional layer, we can construct K = 16 FC networks for
each subject, with each network corresponding to a specific
channel. For simplicity, we averaged the FC networks across all
time periods for each channel. It is worth noting that, since the
constructed FCs are different in each 5-fold cross-validation, we

calculated the cumulative weight as the functional connectivity
value. Finally, using the standard t-test, we measured the group
difference of lMCI vs. eMCI and AD vs. NC, with p-values
shown in Fig. 3 and Fig. 4, respectively. For comparison, in
Figs. 3–4, we also report the group difference of the stationary
FC network (in terms of the Pearson correlation coefficients
for rs-fMRI time-series signals of different brain ROIs [16])
and averaged dynamic FCs (generated by separating time series
into multiple overlapping segments to calculate the Pearson
correlation for each segment [18]), respectively. In Figs. 3–4,
the obtained p-values were binarized (i.e., setting p-values more
than 0.05 to 1; and 0, otherwise) for clarity.

From Figs. 3–4, we can derive several interesting observa-
tions by comparing the FCs learned by our STNet with the
traditional stationary FC and dynamic FCs. First, there are
more discriminative functional connectivities (i.e., the green
parts) in both inter-group analyses, which indicates that our
proposed STNet can identify more AD-related discriminative
connectivities. Second, there is a significant difference of the
connectivity patterns between the two groups. For example, the
discriminative connectivities for the AD vs. NC groups focus on
the hippocampus, middle frontal gyrus, thalamus, and medial
orbital part of superior frontal gyrus etc., while those for the
lMCI vs. eMCI groups focus on the supplementary motor area,
posterior cingulate gyrus, cuneus, and precuneus etc. These
findings are consistent with previous studies on AD/MCI classi-
fication [29], [44]–[46], and the difference between two groups
also demonstrates that the functional connectivity is increasingly
affected by AD along the disease progression. Finally, there
are few discriminative functional connectivities between the
cerebellum region (index of ROIs located in the interval [91,
116] within the AAL template) and other brain regions, which
indicate that the cerebellum might also be associated with AD
and thus can provide useful information for the prediction of AD
progression [47], [48].

E. Comparison With State-of-the-Art Methods

We also compare the results achieved by our method with
several state-of-the-art results reported in the literature on the
ADNI dataset. Since very few works report multi-class classi-
fication results, we only report the results of AD vs. NC and
lMCI vs. eMCI in Table IV, where we also list the details of
each method, including the imaging modality and number of
subjects that have been used. From Table IV, we can see that
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Fig. 3. Group difference (i.e., p-values in t-test) based on functional connectivity networks constructed using different methods in AD vs. NC
groups. Here, brain regions denoted as green means that there is significant difference (i.e., p < 0.05 in t-test) between AD and NC groups. The
term F i

1 (i = 1, . . . , 16) corresponds to the group difference based on dynamic functional connectivities learned by the i-th channel in the first
layer of the proposed convolutional component in STNet. The sub-figure named “Stationary FC” denote the group difference based on networks
constructed using the method in [16], while the sub-figure named “Dynamic FC” represents the group difference based on networks constructed
using the method in [18].

Fig. 4. Group difference (i.e., p-values in t-test) based on functional connectivity networks constructed using different methods in lMCI vs. eMCI
groups. Here, brain regions denoted as green means that there is significant difference (i.e., p < 0.05 in t-test) between lMCI and eMCI groups.
The term F i

1 (i = 1, . . . , 16) corresponds to the group difference based on dynamic functional connectivities learned by the i-th channel in the first
layer of the proposed convolutional component in STNet. The sub-figure named “Stationary FC” denote the group difference based on networks
constructed using the method in [16], while the sub-figure named “Dynamic FC” represents the group difference based on networks constructed
using the method in [18].
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TABLE IV
COMPARISON WITH STATE-OF-THE-ART METHODS FOR BINARY CLASSIFICATION TASK (i.e., AD VS. NC AND LMCI VS. EMCI). SMRI: STRUCTURAL MRI;

PET: POSITRON EMISSION TOMOGRAPHY. VAE: VARIATIONAL AUTO-ENCODER; AE: AUTO-ENCODER; DBN: DEEP BELIEF NETWORKS; MLP: MULTI-LAYER
PERCEPTRON; SLRM: STEPWISE LINEAR REGRESSION MODEL; LDA: LINEAR DISCRIMINANT ANALYSIS; STVF: SPATIAL TEMPORAL VARIABILITY FEATURE.

our STNet method generally outperforms state-of-the-art studies
in both two classification tasks. More specifically, STNet yields
the best accuracy (i.e., 90.28% and 79.36%) and sensitivity (i.e.,
96.67% and 80.95%) in AD vs. NC and lMCI vs. eMCI tasks,
respectively. Although researchers in [33], [49] reported higher
specificity and AUC, their results were quantified on a relatively
smaller dataset. Note that our method is the first one to mine
and utilize the spatial-temporal information and underlying hub
structure for time-series-based brain disease diagnosis, while
previous methods simply ignore this valuable information or
only focus on one aspect of these characterizes. It is also worth
noting that the results in Table IV are not fully comparable,
since these compared methods were performed using different
numbers of subjects and data modalities.

V. DISCUSSION

In this section, we first analyze the discriminative functional
connectivities and hub regions discovered by the proposed
method, and then discuss the limitations of this work and the
possible future research directions.

A. Discriminative Functional Connectivity Patterns

We now investigate the effectiveness of our STNet method in
identifying discriminative FC patterns that are strongly correl-
ative with AD progression. Since we employed a 5-fold cross-
validation strategy, we chose the cumulative absolute weight on
all folds as the contribution indicator for each FC. Specifically,
with 16 FC matrices (the outputs of the local node-centralized
convolutional layer), we first compute the average FCs among
multiple segments for each subject, and treat these values as
the contribution indicator of each connectivity pattern for two
classification tasks (i.e., AD vs. NC and lMCI vs. eMIC). For
both tasks, we show the top 10 identified FC patterns in Fig. 5,
and list the names of the corresponding brain ROIs in Table V.

From Fig. 5 and Table V, we can see that several brain regions,
including the left medial orbital part of the superior frontal gyrus
(ORBsupmed.L), left caudate nucleus (CAU.L), right middle
frontal gyrus (MFG.R), hippocampus (HIP), left orbital part
of the Inferior frontal gyrus (ORBinf.L), left triangular part of
inferior frontal gyrus (IFGtriang.L) and left inferior temporal

Fig. 5. Top 10 brain functional connectivity patterns identified by
STNet in the tasks of (a) AD vs. NC and (b) lMCI vs. eMCI classification.

TABLE V
NAMES OF BRAIN ROIS IN THE TOP TEN CONNECTIVITY PATTERNS OF AD

VS. NC GROUPS AND LMCI VS. EMCI GROUPS. ROI: REGION-OF-INTEREST

gyrus (ITG.L), were highlighted by our method in AD vs. NC
classification. In previous studies [29], [44], [54], [55], these
regions have also been reported to be highly associated with AD
progression. For example, the hippocampal atrophy has been
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Fig. 6. Heat maps (i.e., contributions) of different ROIs along all time-series segments (a) and overall contributions of ROIs among all segments
(b) learned by our STNet method in AD vs. NC classification. The blue color denotes smaller contribution of each brain region for classification,
while the yellow color denotes larger contribution. Regions with large contributions are regarded as hub regions in this work.

confirmed to be relevant to AD in various studies [56]–[58].
On the other hand, in the task of lMCI vs. eMCI classification,
several brain regions were frequently identified by our method,
including the median cingulate and paracingulate gyri (DCG),
right calcarine fissure and surrounding cortex (CAL.R), left
posterior cingulate gyrus (PCG.L), left superior occipital gyrus
(SOG.L), left precuneus (PCUN.L) and lingual gyrus (LING).
These findings are consistent with the clinical knowledge re-
garding the pathological pathway of AD, suggesting that our
method is effective in identifying AD-related FC patterns [45],
[55]. To sum up, the FC patterns identified by our method
are highly suggestive and effective for tracking the progres-
sion of AD/MCI, and strongly agree with existing research
findings.

B. Detected Network Hubs

We further study the efficacy of our STNet method in identify-
ing FC hub regions that are informative in AD/MCI diagnosis.
As shown in Fig. 1(c), the input of the recurrent component
is a N -dimensional vector for each segment, with each ele-
ment in this vector denoting the holistic feature learned from
a specific ROI. That is, such kind of feature can be used as a
measure to evaluate the contribution of each ROI. Therefore,
in this work, we can regard ROIs with larger contributions
along all time-series segments as hub regions. In Fig. 6(a), we
show the contributions of different ROIs in each time-series
segment, where the horizontal and vertical axis denote the index
of ROIs and time-series segments, respectively, and different
colors indicate specific contributions of different brain regions
for disease progression prediction. Correspondingly, the overall
contribution of each brain region among all time-series segments
is calculated in Fig. 6(b), where the horizontal and vertical axis
denote index of ROIs and corresponding contribution value,
respectively.

As can be seen from Fig. 6(a), several hub regions show
their constant importance along the whole time series, including

the right middle frontal gyrus (MFG.R), left anterior cingulate
and paracingulate gyri (ACG.L), left hippocampus (HIP.L), left
lingual gyrus (LING.L), right inferior occipital gyrus (IOG.R),
right angular gyrus (ANG.R) and right precuneus (PCUN.R).
The importance of these hub regions in AD diagnosis has been
reported in previous studies [24]–[26], [59], suggesting that our
method can produce reliable results in hub detection from func-
tional time-series data. The relatively high contribution values
of these discriminative hub regions are also demonstrated in
Fig. 6(b).

C. Limitations and Future Work

Several technical issues need to be considered in the future to
further improve the performance of the proposed method. First,
we currently extract time series from the 116 ROIs partitioned
based on the AAL template, while there are still many other
types of templates that are commonly used in AD disease pro-
gression prediction. It is interesting to investigate whether other
ROI partition strategies can influence the final performance.
Second, following previous studies [33], we focus on using
only rs-fMRI data for automated identification of AD/MCI in
this work. Actually, different image modalities (e.g., structural
MRI and fluorodeoxyglucose PET) can provide complementary
information for AD/MCI diagnosis [60]. It’s also interesting
to take advantage of multi-modality information for AD/MCI
analysis, which will be our future work. Third, although we use
all rs-fMRI scans of all subjects from ADNI, the size of the
dataset is still limited. As the future work, we will evaluate the
proposed method on larger dataset with other brain diseases,
such as autism spectrum disorder.

VI. CONCLUSION

In this paper, we propose an end-to-end Spatial-Temporal
convolutional-recurrent neural Network (STNet) for AD pro-
gression prediction using rs-fMRI time-series data. Specifically,
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a convolutional component is used to model the spatial de-
pendency between the time-series segments of different brain
regions. It not only learns the high-level spatial dependency
patterns but also identify hub regions to guide the learning
of spatial relationships. After that, we further employ a re-
current component with the long short-term memory (LSTM)
units to capture the temporal dynamics patterns of functional
connectivities along multiple time segments. Experimental re-
sults on 563 rs-fMRI scans from the ADNI database demon-
strate that our method can not only improve the classification
performance compared with state-of-the-art methods, but also
provide new insights into the underlying pathological cascade
in AD.
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